,Journal of Organbmetallic Chemistry, 72 **(1974)** *305-308* © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

¹³C NMR SPECTRA OF SOME METHYLPLATINUM(IV) COMPLEXES

:.: **305. :**

BERNHARD E. REICHERT

Department of Chemistry, Monash University, Clayton, Victoria 3168 (Australia) **(Received December llth, 1973)**

Summary

The ¹³C NMR spectra of some methylplatinum (IV) Schiff-base and related **complexes have been recorded. The results are interpreted in terms of the differing effects of various donor atoms on a platinum-carbon bond in the trans position.**

Introduction

There has been considerable study of the ¹H NMR spectra of methylplati**num compounds, particularly with a view to examining the effects of various** *trans* ligands on ²J(¹⁹⁵Pt⁻¹H) for the methyl groups [1], but few correspon**ding 13C NMR data have been. obtained [2,3), and these almost entirely for plat-** inum(II) complexes. Interpretation of coupling constants with platinum relies **on the dominance of the Fermi contact term [4].** Although **McConnell's treatment of coupling through more than one bond [53 has been applied fairly successfully to 'J(M-H) in methyl organometaIlics~ [6], and used to obtain information on** *trans* **influences in methylplatinum compounds [I], it is apparent** that treatment of ${}^{1}J({}^{195}Pt-{}^{13}C)$ would be simpler and more reliable.

Therefore the ¹³C NMR spectra of several methylplatinum(IV) compounds, **including some containing Schiff-base ligands, have been measured and are** shown in Table 1. Numbering corresponds to structures in Fig. 1. Reduced coupling constants [4] given by $K(\text{Pt}-\text{C}) = (4\pi^2/h\gamma_{\text{p}}/\gamma_{\text{C}})J(\text{Pt}-\text{C})$ are also in-

고파장

played decomposition in solution, these peaks are not listed.

 $\frac{1}{2}$

k,

in
S $\frac{1}{2}$

> \cdot \sim

> > $\bar{\beta}$

 $\ddot{}$

 ϵ

 $\hat{\xi}$:

 $\frac{1}{\sqrt{2}}\left(\frac{1}{2} \right) \delta \lambda^{\frac{1}{2}}$

 $\label{eq:2} \frac{1}{\sqrt{2}}\frac{$

 $\hat{\mathcal{S}}$

 \mathcal{L}

an
Ali

 306

 $\frac{1}{2}$

TABLE 2 ¹H NMR SPECTRA^{*a*}

$^{2}Jt^{195}$ Pt $^{-1}$ H) values **Compound** δ values (ppm **downfield from** (Hz) **internalTMS)** Me(1) Me(2) Me(3) **Me(1)** Me(2) Me(3) **UWNI** [Me₂PtBr₂(Sal=N-Me)] **1.83** 1.99 1.99 1.99 1.83 1.99 **CBu4Nl** [Me₂PtBr₂(Sal=N-Ph) **1.27** 2.02 73.0 69. **CBu4Nl [Me2PtBr~Sall 2.04 2.15 74.1 78.6** Me₃Pt(Sal=N-Me)Py^b **0.86 0.95 0.85 71.5 6.5.5 71.7** $Me₂ PtBr₂Py₂$ **2.06 70.1**

^a Measured at 100 MHz in CDCl₃ solutions at 306 K. b Assignments of Me(1) and Me(3) are arbitrary.

cluded. $Me_2 PtBr_2 Py_2$ and $[Bu_4 N] [Me_2PtBr_2(Sal=N-R)]$ were synthesized by reported methods [9, 10], while [Bu₄N] [Me₂PtBr₂Sal] was made analogously to the Schiff-base complexes and Me₃Pt(Sal=N-Me)Py by reaction of $[\text{Me}_3\text{PtI}]_4$ with TlSal=N-Me $[11]$ then treating the $[\text{Me}_3\text{Pt}(\text{Sal=N-Me})]_2$ ob**tamed with pyridine. The 'H NMR spectra of some of these complexes have** been reported elsewhere [10], however the chemical shifts and ${}^{2}J({}^{195}Pt-{}^{1}H)$ **values for the platinum methyl resonances are shown in Table 2 for comparison.**

Prom the equation of Pople and Santry 14) for the dominant contact contribution to the reduced coupling constant, this can, if overlap integrals are neglected, be expressed <ass:

$K(\text{Pt--C}) = \text{(constant)} \left(\Delta E^{-1}\right) \alpha_{\text{Pt}}^2 \alpha_{\text{C}}^2 \langle 2s_{\text{C}} | \delta | 2s_{\text{C}} \rangle \langle 6s_{\text{Pt}} | \delta | 6s_{\text{Pt}} \rangle$

where ΔE is a mean excitation energy for the bonding electrons, α_x^2 are the s **orbital contributions to the bonding orbital from the appropriate atoms (i.e. s** characters of the hydrid orbitals) and the last terms are integrals giving electron **densities of the bonding s orbitals at the indicated nuclei. This type of expression has been widely used in the discussion of coupling constants involving platinum,** particularly direct ¹⁹⁵Pt⁻³¹P couplings, to investigate *trans* influences in reduction of covalency and hence α_{Pt}^2 [1]. These studies have generally assumed con**stancy of AE and the electron density integrals, and although one should be wary about these assumptions they appear to be generally satisfactory.-**

The results presented here indicate, following this same approach, that the nitrogen donor of a sahcylaldimine has a considerably stronger *tram* **influence than the oxygen, and is stronger in the akyl salicylaldimine than in the aryl analogue. The aldehyde oxygen of sahcylaldehyde, on the other hand, has a much weaker effect, while pyridine appears to be slightly weaker than the nitrogen of N-methyl salicylaldimine. These results parallel those suggested by the 'H NMR data.**

The assignments for the anionic dimethylplatinum complexes have been made on the basis of a constant K(Pt-C!) value for one 13C nucleus and this is

:

therefore assigned *trans* to the oxygen donor. For the trimethylplatinum com-**plex it has been assumed that the ratio of the K(Pt-C) values for Me(1) and i.** $Me(2)$ will be the same as in $[Bu_4N]$ $[Me_2PtBr_2(Sal=N-Me)]$, the assignments shown both give ratios of 1.10. It is quite notable that the $K(\mathbb{P}t-\mathbb{C})$ values are much larger in Me₃Pt(Sal=N-Me)Py than in the dimethyl complexes. The ratios of $K(\text{Pt}-\text{C})$ for Me(1), Me(2) and Me(3) in the trimethyl compound to the corresponding values in $[Bu_4N]$ $[Me_2PtBr_2(Sal=N-Me)]$ and $Me_2PtBr_2 Py_2$ **are 1.35,1.36 and 1.38 respectively,.i.e. they are virtually equal. This suggests** that the effect is due to the bromine, rather than the charge on the complex. It may be that the bromine atoms, which are very strongly bound [10], exert a cis influence by reducing $\alpha_{\rm pt}^2$ for the platinum carbon bond, they themselves using a large part of the Pt 6s orbital in bonding.

Another noteworthy feature is the lack of any appreciable coupling of platinum to other ¹³C nuclei (less than 20 Hz) while the protons of the CH=N **and N-Me groupings in the salicylaldimine complexes have couplings approximately l/3 and l/4 respectively of the directly bonded methyls. This strongly** suggests that π contributions are important in these couplings and the contact term does not give an adequate approximation to their values.

Further studies should provide more information about these and related complexes.

References

- **1 T.G. Appleton, R.C. Clark and L.E. Manzer. Coord. Chem. Rev., 10 (1973) 335 and references cited** therein.
- **2 A.J. Cheney. B.E. Mann and B.L. Shaw. Chem. Common.. (1971) 431.**
- **3 M.H. Chishohn. H.C. Clark. L.E. Mauzerand J.B. Stothers. Chem. Common.. (1971) 1627. 4 J.A. Popleand D.P. Saotxy. Mol. Phys.. 8 <1964) 1.**
-
- **5 KM. McComeK, J. Chem. Phys.. 24 (1956) 460.**
- 6 G.W. Smith, J. Chem. Phys., 39 (1963) 2031.
7 G.C. Levy and J.D. Cargioli, J. Magn. Res., 6 (1972) 143.
- **8 P.C. Lautezbur, Ann. N.Y. Acad. Sci.. 70 (1958) 841.**
-
- **9 J.R. Hall and G.A. &vile. Aust. J. Chem.. 24 (1971) 423.**
- **10 KS. Munay. B.E. Reichert and B-0. West, J. OrganometaL Cbem. 63 (1974) 461.**
- 11 V. Romano, R. Badalamenti, T. Pizzino and F. Maggio, J. Organometal. Chem., 42 (1972) 199.

.

308 .-:. :